Jumat, 07 September 2012

Sistem Pengereman Pada Sepeda Motor


SISTEM REM DAN RODA (BRAKE SYSTEM AND WHEEL)




Sistem rem dalam suatu kendaraan sepeda motor termasuk sistem yang sangat penting karena berkaitan dengan faktor keselamatan berkendara. Sistem rem berfungsi untuk memperlambat dan atau menghentikan sepeda motor dengan cara mengubah tenaga kinetik/gerak dari kendaraan tersebut menjadi tenaga panas. Perubahan tenaga tersebut diperoleh dari gesekan antara komponen bergerak yang dipasangkan pada roda sepeda motor dengan suatu bahan yang dirancang khusus tahan terhadap gesekan.
Gesekan (friction) merupakan faktor utama dalam pengereman.
Oleh karena itu komponen yang dibuat untuk sistem rem harus mempunyai sifat bahan yang tidak hanya menghasilkan jumlah gesekan yang besar, tetapi juga harus tahan terhadap gesekan dan tidak menghasilkan panas yang dapat menyebabkan bahan tersebut meleleh atau berubah bentuk. Bahan-bahan yang tahan terhadap gesekan tersebut biasanya merupakan gabungan dari beberapa bahan yang disatukan dengan melakukan perlakuan tertentu. Sejumlah bahan tersebut antara lain; tembaga, kuningan, timah, grafit, karbon, kevlar, resin/damar, fiber dan bahan-bahan aditif/tambahan lainnya. 

Terdapat dua tipe sistem rem yang digunakan pada sepeda motor, yaitu:
1) Rem tromol (drum brake) dan
2) Rem cakram/piringan (disc brake).

Cara pengoperasian sistem rem-nya juga terbagi dua, yaitu:
1) secara mekanik dengan memakai kabel baja, dan
2) secara hidrolik dengan menggunakan fluida/cairan. Cara pengoperasian sistem rem tipe tromol umumnya secara mekanik, sedangkan tipe cakram secara hidrolik.  

Sistem Pengapian Konvensional


Berikut akan dijelaskan mengenai prinsip kerja sistem pengapian konvensional. 
Prinsip kerja sistem pengapian konvensional ada dua kondisi yaitu kondisi saat kunci kontak ON platina menutup dan Aliran arus listrik pada saat platina membuka.

1)  Pada saat kunci kontak ON, Platina menutup
Aliran Arus Listrik Saat Konci Kontak ON, Platina Menutup
Aliran arusnya adalah sebagai berikut:
Baterai ----> Kunci kontak ----> Primer koil ----> Platina ----> Massa.
Akibat aliran listrik pada primer koil, maka inti koil menjadi magnet.



2) Saat platina membuka
Aliran Arus Saat Platina terbuka

Saat platina membuka, arus listrik melalui primer koil terputus, terjadi induksi tegangan tinggi pada sekunder koil, sehingga arus akan mengalir seperti dibawah ini:
Sekunder koil ----> Kabel tegangan tinggi ----> Tutup distributor ----> Rotor ----> Kabel tegangan tinggi (kabel busi) ----> Busi ----> Massa.
Akibat aliran listrik tegangan tinggi dari sekunder koil, mampu meloncati tahanan udara antara elektroda tengah dengan elektroda massa pada busi dan menimbulkan percikan bunga api.

Sistem Motor 2 Langkah


Prinsip Kerja Motor 2-Tak

Motor 2-Tak
Motor 2 langkah
Pada dasarnya prinsip kerja motor 2-tak sangat simpel/sederhana.  Pada satu siklus pembakaran terjadi dua kali langkah seker/piston. sangat berbeda sekali dengan prinsip kerja motor 4-tak. Pada motor 4-tak terjadi 4 langkah pada satu siklus pembakaran. walaupun sama-sama memiliki 4 proses, langkah isap, langkah tekanan/kompresi, langkah putar/tenaga dan langkah buang. yang diteruskan ke saluran buang atau Knalpot.

Titik Mati Atas (TMA) dan Titik Mati Bawah (TMB)
Titik Mati Atas (TMA) dan Titik Mati Bawah (TMB)



Langkah 1 dari TMA ke TMB, Piston bergerak dari TMA ke TMB maka akan terjadi penekanan pada ruang Bilas yang ada di bawah piston. Pada lubang linier terdapat lubang dari Intake dan Exhaust. saat piston bergerak melewati lubang exhaust, gas yang berada pada ruang bakar akan keluar melalui lubang exhaust. saat piston melalui lubang intake maka gas dalam ruang bilas yang terpompa oleh piston akan masuk ke dalam ruang bakar, dan saat langkah ini gas dari sisa pembakaran akan terdorong keluar melalui exhaust.


Langkah 2 dari TMB ke TMA, Piston yang bergerak dari TMB ke TMA akan melakukan penghisapan campuran bahan bakar, udara, dan pelumas (oli samping). setelah piston melewati lubang intake dan lubang exhaust maka piston akan melakukan langkah kompresi yang akan menghasilkan tekanan pada ruang bakar. piston akan terus menekan sampai TMA, dan pada tepat berada di TMA. campuran bahan bakar dan udara yang sudah mendapat tekanan yang dasyat dari piston akan terbakar oleh api yang dipercikkan oleh busi. setelah terjadi ledakan pada ruang bakar maka akan diteruskan ke langkah tenaga, dan tenaga disalurkan ke sistem transmisi.
seperti itulah gambaran prinsip kerja motor 2-tak. hal tersebut terjadi berulang-ulang selama motor masih bekrja. inilah sedikit gambaran prinsip kerja motor 2-tak.

Cara Kerja Motor 4 Langkah


Mengapa mesin disebut 4 tak, karena memang ada 4 langkah. Berikut adalah detail dari setiap proses. Untuk memudahkannya, maka setting email anda ke HTML sehingga gambar akan terlihat berurutan. Lihat pada gambar di bawah ini.
4-stroke-engine
1. Intake
Disebut langkah intake karena langkah pertama adalah menghisap melalui piston dari karburator. Pasokan bahan bakar tidak cukup hanya dari semprotan karburator. Cara kerjanya adalah sbb. Piston pertama kali berada di posisi atas (atau disebut Titik Mati Atas). Lalu piston menghisap bahan bakar yang sudah disetting/dicampur antara bensin dan udara di karburator. Piston lalu mundur menghisap bahan bakar. Untuk membuka, diperlukan klep atau valve inlet yang akan membuka pada saat piston turun/menghisap ke arah bawah.
Gerakan valve atau inlet diatur oleh camshaft secara mekanis. Yakni, camshaft mengatur besaran bukaan klep dengan cara menekan tuas klep. Camshaft sendiri digerakan oleh rantai keteng yang disambungkan antara camshaft ke crankshaft. Untuk detilnya, lihat gambar berikut.
Perhatikan bahwa A adalah Intake Valve (klep masuk bahan bakar) dan klep ini ditekan (membuka) karena I (camshaft) menekan valve A. Dengan demikian, pada saat piston turun, maka A terbuka sekaligus bahan bakar ditarik masuk ke ruang bakar. A akan menutup sampai batas tertentu sebelum langkah kedua : kompresi. Rantai keteng tidak terlihat karena akan sulit digambarkan di atas, tetapi crankshaft (P) terhubung dengan camshaft (I). Beberapa mobil Eropa seperti Mercedez menggunakan rantai sebagai penghubung antara crankshaft dan camshaft, tetapi umumnya di mobil Jepang menggunakan belt yang kita kenal sebagai timing belt.
2. Kompresi
Langkah ini adalah lanjutan dari langkah di atas. Setelah piston mencapai titik terbawah di tahapan intake, lalu valve intake tertutup, dan dilakukan proses kompresi. Yakni, bahan bakar yang sudah ada di ruang bakar dimampatkan. Ruangan sudah tertutup rapat karena kedua valve (intake dan exhaust) tertutup. Proses ini terus berjalan sampai langkah berikut yakni meledaknya busi di langkah ke 3.
3. Combustion (Pembakaran)
Tahap berikut adalah busi pada titik tertentu akan meledak setelah PISTON BERGERAK MENCAPAI TITIK MATI ATAS DAN MUNDUR BEBERAPA DERAJAT. Jadi, busi tidak meledak pada saat piston di titik paling atas (disebut titik 0 derajat), tetapi piston mundur dulu, baru meledak. Hal ini karena untuk menghindari adanya energi yang terbuang sia-sia karena pada saat piston di titik mati atas, masih ada energi laten (yang tersimpan akibat dorongan proses kompresi). Jika pada titik 0 derajat busi meledak, bisa jadi piston mundur tetapi mengengkol crankshaft ke arah belakang (motor mundur ke belakang, bukan memutar roda ke depan).
Setelah proses pembakaran, maka piston memiliki energi untuk mendorong crankshaft yang nantinya akan dialirkan melalui gearbox dan sproket, rantai, dan terakhir ke roda.
4. Exhaust (Pembuangan)
Langkah terakhir ini dilakukan setelah pembakaran. Piston akibat pembakaran akan terdorong hingga ke titik yang paling bawah, atau disebut Titik Mati Bawah. Setelah itu, piston akan mendorong ke depan dan klep exhaust membuka sementara klep intake tertutup. Oleh karena itu, maka gas buang akan terdorong masuk ke lubang Exhaust Port (atau kita bilang lubang sambungan ke knalpot). Dengan demikian, maka kita bisa membuang semua sisa gas buang akibat pembakaran. Dan setelah bersih kembali, lalu kita akan masuk lagi mengulangi langkah ke 1 lagi.